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Part A: Project Proposal Plan 

This document covers all the necessary details regarding the AI Stock Helper program, which will 

support employees by providing data-based trading suggestions. 

Project Summary 

• The Problem: Human investors are subject to bias and emotional decision-making, resulting in 

stock market losses. 

• Employees at Dated Investors, Inc. are tasked with selecting stocks that hopefully will grow in 

value. They serve as the company's backbone, making decisions that benefit or harm the 

company and its clients. These employees will benefit significantly from an impartial program 

that uses the latest technology to recommend stock trades. 

• While existing tools provide our employees calculations, none utilize machine learning. Such a 

program could be a “second mind” to aid decision-making. 

• Deliverables: 

o Program takes a stock ticker, trains an AI model on the stock, and returns a 

recommendation 

o Models are saved, retrieved, and updated from a database 

o The UI is added to the application 

o The application is deployed to an online platform and is accessible by a link 

• The expected outcome of this project is that by using a machine learning tool, investors can be 

aided in making impartial and rational decisions. Investors will feel more comfortable trading 

when the tool agrees and reconsider their decision when it disagrees. 

Data Summary 

• Data will be collected using the yfinance API during runtime. 

• During development, ten years of daily stock prices will be pulled from the API. The application 

will preprocess the “Closing” prices from each day and split the data into a larger training set 

from the beginning of the history and a smaller testing set. Once trained to reasonably predict 

stock prices, the model will be saved alongside its ticker symbol, output, and last update date. 

After deployment, the application will attempt to update the model with new data every time 

the ticker is requested.  

• The API can return all financial data from Yahoo Finance, which is more than enough data to 

train AI models. Though the API is robust, the numpy library will aid in preprocessing the data. 

• All data available in yfinance is freely available to the public. However, the program should not 

be trained on any stock where insider trading may be an issue. Additionally, the details 

regarding the application can only be shared on a need-to-know basis. Once deployed, 

employees are not to share links, data, or screenshots of the program with persons outside the 

company. 
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Implementation 

The CRISP-DM methodology will ensure the project starts well-defined and on a trajectory to success: 

Business Understanding Investors need reliable, timely tools to help them make stock market 
decisions. An AI software tool will be created that receives a ticker symbol, 
updates its model to reflect current data, and provides a suggestion for the 
investor on whether to buy or sell that stock. 

Data Understanding Data will be collected using the yfinance API during runtime. The software 
will preprocess the "Close" prices from each day for the AI and train to 
examine trends and patterns while mitigating irregularities. Once trained 
initially, it can be updated using new data as needed. The models will be 
updated whenever their last updated date doesn’t match the previous 
market close. 

Data Preparation Ten years of daily stock prices will be used. 

Modeling Train models using a majority of the dataset. 

Evaluation Test models on the remaining minority of the dataset. 

Deployment Build an application with a database and UI around the models. 

Monitoring Models attempt to automatically update every time a user submits a 
request. Models will be continually tested, fine-tuned, and improved. 

 

Project implementation plan: 

1. Jupyter Notebooks: The implementation will start in Jupyter Notebooks for convenience in 

cross-editing the same document, running portions of code in real-time, and displaying results. 

Objectives of this part of the implementation are: 

a. The model will be trained and tested on ten years of data 

b. A Mean-Squared Error goal will be determined to ensure the model’s accuracy is 

sufficient 

c. A standard for training a model that produces consistent results across any ticker 

d. The model will predict future prices 

e. The model will be updatable when new data is available 

f. Saving and loading a model from a database 

2. Flask App: The code will be transferred to a Python file from Jupyter Notebooks, and the 

application will be developed in Visual Studio Code. The objectives of this portion are: 

a. Build a simple Flask application around the model file that runs locally 

b. The application provides tickers in a drop-down menu and provides a simple text result 

c. The application can load, update, and save models.  

3. Deployment: The Flask application will be deployed to Heroku and accessible by link. 

4. Maintenance: The application will be assessed and continuously tested. This is also the point 

where plans can be made to make the program more robust, such as including more 

prescriptive features, testing its accuracy, and creating a plan to improve accuracy.  

5. Outcome: The expected outcome is that the application will be able to give a conservative 

prediction that our employees can rely on for a grounded insight into the future stock’s price. 
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Timeline 

Deliverable Duration 
Projected start 

date 
Anticipated 

end date 

Project definition & planning 4 Days 6/3 6/7 

AI model coding 5 Days 6/10 6/14 

Database creation 2 Days 6/17 6/18 

UI creation 1 Day 6/19 6/19 

Combining elements into one app 2 Days 6/20 6/21 

Deployment to Heroku 1 Day 6/24 6/24 
 

Evaluation Plan 

Reviews and testing will be conducted during each step to verify that the project is being built 

correctly. A review of the requirements before starting a deliverable will ensure that the deliverable 

meets all the project needs, and a review after the deliverable will double-check its completeness. 

Testing will be conducted as appropriate for the deliverable – some deliverables, such as model coding, 

allow testing to be done before beginning, during, and after completion. Others can only be tested after 

completion. The rule of thumb here will be to start testing as early as possible, with every step tested 

thoroughly by the end of the deliverable. With a focus on reviewing before and after each deliverable 

and prioritizing testing, this project will come together seamlessly without needing to backtrack to solve 

issues. 

The model itself will need to be tested as well. Fortunately, as the model is trained and tested, it 

returns a Mean Squared Error (MSE), a feature built-in by the project libraries. This MSE is a floating-

point number that helps the user understand how close the trained model is getting to actual data. 

While the model is being developed, a general goal for each model’s MSE will be established to ensure 

consistency. 

Once the application is finished, our team will conduct user acceptance testing, utilizing the 

Asset Management team so our fellow employees can try out the program. Their feedback will be 

recorded to determine the validity of the application. Once deployed, the program will undergo field 

testing to evaluate its performance. This will help us determine if the application has met the needs of 

our project. 
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Resources and Costs 

Resource Phase Cost 

Hardware – work computers (already provided) All Free 

Software – SQLite, Jupyter Notebook, Visual Studio 
Code, Google Colab, several dependencies 

Development, Deployment, 
Maintenance 

Free 

Development Work Hours – 75 Development, Deployment $3600 

Heroku – Hosting platform Deployment, Maintenance $25/month 

Maintenance Work Hours – 10 per month Maintenance $475/month 
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Part B: Application 

 

AIStockHelper Web App 

http://wesslancaster.com:5000/  

This is the completed application that users may access via a link. 

 

Jupyter Notebook Code Demo 

https://colab.research.google.com/drive/1z96VjkJXcIOQ6KdNjEPjhmxKKfLd7FLH?usp=sharing  

This is an excellent resource for understanding the code. It shows every facet of building a model as well 

as an explanation. It begins by creating an outdated model and performs an update later. It also tests SQL 

and data processes vigorously. 

 

Github 

https://github.com/wessbl/wbl-aistocks  

Please note that the installation is extensive due to the number and size of packages the project requires, 

so I recommend only using this resource to review the code that makes the application. Additionally, 

updates will continue to be posted in the future. Currently, these are the main files of the program: 

• app.py: Contains the code for launching the application and serves as the controller 

• model/lstm_model.py: The LSTM model file. Most of the back-end processing is done in this one 

file, including database management, model updating, and training. That being said, the Jupyter 

Notebook was prepared as a walkthrough of the code to demonstrate how it works. 

  

http://wesslancaster.com:5000/
https://colab.research.google.com/drive/1z96VjkJXcIOQ6KdNjEPjhmxKKfLd7FLH?usp=sharing
https://github.com/wessbl/wbl-aistocks
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Part C: Post-implementation Report 

Business Requirements Document 

Company Name Date 

Dated Investors, Inc. 6/2/24 

Project Name Created By 

AIStockHelper Wess Lancaster 

 

 

 

Executive Summary 

 

• This project will utilize AI to help investors trade in the stock market 

• It will result in an online application and recommend buying or selling a 
particular stock 

 

Business Objectives 

 

• Use the latest technology to predict stock prices 

• User will submit a ticker and receive a recommendation 

• Project will deploy on June 24th 

 

Needs Statement 

 

• AI is proving to be valuable cutting-edge technology in our industry 

• Our employees need an additional resource that can help them decide 
on stock market trades 

• This project will be a “second mind” for investors to help them grow 
value in the stock market 

 

Project Scope 

 

• Create a web app that takes a ticker and returns a recommendation 

• Development will cost $3600, $500 per month afterward in platform 
and maintenance costs 

• Deliverables: Project planning, AI model, Database, UI, Flask App, 
Deployment  

 

Requirements 

 

• Initial Development: Google Colab, Jupyter Notebooks 

• Mid-Development: Visual Studio Code, expansive dependencies 
including Flask and AI libraries 

• Deployment: AWS EC2 server instance, PuTTY 
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Solution Summary 

Trading in the stock market is risky, and human error can result in costly mistakes. Our employees 

needed better tools to make balanced decisions. It was decided to utilize AI to help our employees trade 

more effectively. I designed a plan to create a tool to give a prediction for a selected stock ticker that is 

accessible online.  

Utilizing AI, I created software to take a ticker and predict an increase or decrease in that stock’s 

price. This means that our employees will have the confidence to buy a stock that the AI suggests will 

increase in value. Our employees can also run the software daily to see if that stock will lose value, 

helping them determine when to exit the investment appropriately. If the software employee desires to 

purchase a stock but the AI asserts it will lose value, the employee will need to consider the timing of the 

investment and tighten up their strategy. Regardless, the tool will encourage rational thinking and keep 

employees grounded. 

Development began in Jupyter Notebooks, where I determined how to build the model. All the 

primary functions were written there, from modeling stock and making predictions to generating 

visualizations to database management. This proved to be an excellent resource throughout future stages 

of development. Once finished, I transferred the code to Visual Studio Code to turn it into a Flask 

application and deployed it on an Amazon Web Service (AWS) EC2 server. While much more hands-on, 

deploying with AWS allowed a virtual environment on their server, which gives the application much 

more freedom in the dependencies and versions it uses. Further, the cost is comparable to Heroku, the 

original deployment route. 

The original hypothesis of the project was that a machine learning program would be able to use stock 

price history to provide an adequate recommendation relatively quickly. The question I’m led to ask is, 

how quickly? In a real-world setting, the app responds in less than 5 seconds on average, though it tends 

to take just over 20 seconds when it is updated. While I’ve been humbly reminded that predicting stock 

prices requires extensive calculations, I am pleased to accept that my hypothesis was correct. Though we 

are used to getting immediate answers in the digital era, having a good recommendation to purchase a 

stock in less than 30 seconds is a significant feat. And while accuracy is not a factor during this stage, I 

am impressed with the results I’ve seen. It tends to mirror another popular stock tool, the moving average, 

except it can also guess where the stock is heading in the future. If nothing else, the application has the 

potential to be highly accurate with future development. 

Data Summary 

All data is accessed via the yfinance API during runtime, using the yf.download() function to get ten 

years of stock prices. From there, only the closing prices are kept, and the numbers are scaled down for 

training. The scalar that transformed the data is kept for future use. Long Short-Term Memory (LSTM) 

models are trained on the data over several epochs to become acquainted with its patterns and velocities. 

Afterward, the scalar performs a reverse transformation on the original stock price and the model 

predictions of the stock price. All data is used in matplotlib functions to display the data. 

No data was collected during the design phase because the software is the method of obtaining the 

data. Data was collected during development to train the models initially and during maintenance to 
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update the models on new data. Updates involve getting all prices from the same start date through the 

most recent close price, then training the models on the latest price over three epochs.  

Over the following pages, I’ve included screenshots of the data as it is processed in preparation to be 

fed to an LSTM. 

 

 

Figure 1: The raw data from yfinance 
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Figure 2: Step 1: All but 'Close' prices are filtered. Step 2: The 
data is put into a multidimensional array. Step 3: The data is 

scaled to numbers between -1 and 1 

Figure 3: For each day in the dataset, 75 days are added to an 
array starting with that day and ending 75 days later. 

 

 That last image of the processed input data is one of the best ways to understand how an LSTM 

works step-by-step. The machine takes data in 75 pieces at a time and tries to predict what the 76th piece 

will look like. For example, it takes days 1-75 to predict day 76, then days 2-76 to predict 77, and so on. 

The remarkable thing is that the output is continuous, so you see a smooth line on a larger scale instead of 

a jumble of points. 

Machine Learning 

• What: A Long Short-Term Memory model (LSTM) is a Recurrent Neural Network, a collection 

of nodes that use logic to make decisions. They utilize regression, a way for computers to 

determine patterns from raw data, and output a continuous value, such as temperatures over time. 

This makes them a natural choice for evaluating stocks and predicting future prices. 

• How: The model was trained with a supervised learning technique, where it was given historical 

prices and asked to predict future ones. This is seen in my examples using model.predict(days), 

which is used both to mirror known data and make a prediction for future prices. Specifically, I 

built the model to monitor different time values over 1, 5, and 75 days to model daily changes and 

roughly capture weekly and seasonal cycles, as the stock market only trades five days per week. 
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Fortunately, all the heavy lifting was done by utilizing package libraries such as keras and 

tensorflow. 

• Why: Each stock has a pattern of highs and lows with wild fluctuations in between. I chose an 

LSTM because they can predict by identifying such patterns over a specified period. This makes 

LSTMs well-suited for predicting stock prices using only the history of recent prices. 

Here is a sample of the code used to generate the models. Note that lstm_unit = 75, and epochs should 

equal 20 or more to achieve a Mean Squared Error (MSE) less than 0.0003. 

#--- Function: Train a new or existing model ---# 

def train_model(model): 

  # Build and compile the LSTM, if needed 

  if (model == None): 

    model = Sequential() 

    model.add(LSTM(lstm_unit, return_sequences=True,  

        input_shape=(time_step, 1))) 

    model.add(LSTM(lstm_unit)) 

    model.add(Dense(5)) # Capture weekly cycles, 5 trading days/week 

    model.add(Dense(1)) 

    model.compile(optimizer='adam', loss='mean_squared_error') 

 

  # Train model 

  model.fit(X, y, epochs=epochs, batch_size=batch) 

  if verbose: print("Model is trained!") 

  return model 

#-----------------------------------------------# 

 

 The models didn’t only need to be trained; they also needed to return a recommendation to buy or 

sell the stock. To do this, Keras’ LSTM.predict() method was used on a loop to predict a specified 

number of days in the future. Seventy-five days of preprocessed and scaled data must be given before the 

first day can be predicted. After that, the prediction is added to the array, and the first day is removed so 

the next day can be predicted, and so on. Here is the method: 

 #--- Function: Predict price over future given days ---# 

def predict(days): 

  multi_day_data = scaled_data[-time_step:] 

  X_predict = multi_day_data[:time_step].reshape(1, time_step, 1) 

 

  # Create an array with the first index at last known close price 

  prediction = [] 

  prediction.append(orig_data[len(orig_data) - 1][0]) 

 

  # Predict the next 5 days' prices iteratively 

  print("days:\t", days)    # TODO remove debug print 

  for i in range(days): 
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      # Predict the next day's price 

      scaled_price = model.predict(X_predict) 

      actual_price = scaler.inverse_transform(scaled_price.reshape(-1, 1)) 

      prediction.append(actual_price[0, 0]) 

 

      # Update the input sequence for the next prediction 

      multi_day_data = np.append(multi_day_data, scaled_price) 

      X_predict = multi_day_data[-time_step:].reshape(1, time_step, 1) 

 

  return prediction 

#------------------------------------------------------# 

 

 The returned prediction is used for the Model Prediction image type below. Now that we’ve 

received the prediction, we can also decide what it means for the user. The stock should be bought if the 

last predicted price equals or exceeds the previous closing price. Otherwise, the stock will decrease in 

value and should be sold (or not bought at all). For the curious, I decided to buy the stock if it were to stay 

the same because assets that merely hold their value are sometimes valued by investors, such as so-called 

“park my cash” investments. Additionally, I added a percentage to help the end user understand the 

numbers behind the prediction. 

Here is the buy_or_sell method: 

#--- Function: Determine whether to buy or sell stock ---# 

def buy_or_sell(prediction): 

  last_price = orig_data[len(orig_data) - 1][0] 

  last_predicted = prediction[len(prediction) - 1] 

  percent = (last_predicted * 100 / last_price) 

 

  if last_price <= last_predicted: 

    percent = percent - 100 

    percent = str(f"{percent:.2f}") 

    return "Buy: AIStockHelper says this stock will go up in value by " 

        + percent + "%." 

  else: 

    percent = 100 - percent 

    percent = str(f"{percent:.2f}") 

    return "Sell: AIStockHelper says this stock will go down in value by " 

        + percent + "%." 

#---------------------------------------------------------# 

 

Validation  

To validate the LSTM’s training, I divided the data into training and testing sets, where the model 

was trained on the first 80% and tested on the last 20% of the closing prices of a stock over the last ten 
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years. I followed the MSE values as it trained to monitor its progress and visually inspected its 

predictions. I established a general goal of an MSE value of 3.0e-04 or lower, a feat that is quickly 

achievable through careful tuning of the LSTM. 

There was also a point when future stock prices would always jump way up, another phase where 

they would take a dramatic plunge. I carefully monitored its predictions and tweaked how it learned to 

ensure its results were realistic and consistent with the pattern of its stock. 

Addressing the program's accuracy in lay terms requires an explanation of MSE. MSE measures 

the average squared difference between the actual and the predicted values. This seemingly incongruous 

metric is more understandable if you convert it to a percentage by determining the Root Mean Squared 

Error (RMSE) and dividing it by the mean of actual prices. I included a block of code that does precisely 

this in Jupyter Notebooks and found an error percentage of 4.98%, as seen below. This result varies 

widely each time a model is trained but tends to stay around 5-6%. 

 
Figure 4: Code and output that calculates the MSE, RMSE, and percentage error of the LSTM model 

 There were many revisions to the original plan. My first choice was to create a Support Vector 

Machine since they are good with regression problems. Unfortunately, the first generation of these was 

utterly inferior to the first LSTM I developed, with the prediction nearly cutting the price by a third. 

Meanwhile, the first generation of LSTM was intriguing – while it also predicted the stock would 

plummet, it at least traced a line downward that was more realistic. But even more surprising was that it 

mirrored the actual price closely, following every market trend. The LSTM interested me and seemed to 

suit my needs better. 
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Figure 5: My first generation SVM model on AAPL stock 

 
Figure 6: My first generation LSTM model on AAPL stock, zoomed in 

 To make the LSTM more accurate, I changed how the models were trained. Below is the code 

behind the first-generation model, as well as a node diagram of the model generated by the code: 

# Build the LSTM model 

model = Sequential() 

model.add(LSTM(64, return_sequences=True, input_shape=(time_step, 1))) 

model.add(LSTM(64)) 

model.add(Dense(64)) 

model.add(Dense(1)) 
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Figure 7: A node diagram of my first LSTM model 

 As discussed before, I changed these values to fit the weekly and seasonal fluctuations of the 

stock market, and the node diagram for the final version is provided in the next section. Additionally, I 

shrank the time_step from 100 in the first generation to 75 in the last and doubled the number of epochs. 

These changes had a dramatic impact on the stability of the predictions as well as the way the model 

mirrored actual data. 

Once I got the final version of the model, I made the Flask app around it and deployed it. I found 

that wait times for training and image generation exploded when running the application on a remote 

server – it was time to optimize. I had the models train on ten epochs at the beginning, and ten epochs 

were used every time new data was available, but I found the wait times were longer than one minute. 

This did not meet one of my objectives for the project: to provide recommendations quickly. I lowered the 

epochs to three and monitored the MSE to ensure it did not drop. I had seen before that adding new data 

can reduce the model's accuracy. I formulated a worst-case scenario: what if only one employee wants to 

check on a stock ticker and does so only once per month? And what if there was only one epoch to train 

every time? I was surprised to find that my initial assumption was incorrect – even with a month between 

each update, each epoch will gradually bring the MSE down: 

 
Figure 8: One epoch every month (20 days) – its decreasing MSE is in the right column 
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The best way to handle this within the scope of the project would be to train all the models 

heavily up-front and only provide a few epochs to learn from new data. I set the models to train on 20 

epochs and update on 3, and my evaluation suggested it was the right move. I saw an occasional dip in 

accuracy and suspected it would still roughly have an MSE value of 3e-04, even after weeks of neglect. 

To ensure this, the MSE of the models will be routinely checked during the maintenance phase. Here is a 

sample of the MSE values after epoch 20 and 3 updates for three days afterward: 

 
Figure 9: Testing the effect of a single epoch per close price, starting with 20 epochs  

Visualizations 

While the web app generates two images in real time, all three types of visualizations are accessible 

from the Jupyter Notebooks link. Here is an explanation of the three types of images seen in the 

notebook: 

1. Model Nodes: This image shows the different nodes of the LSTM over the values of the time 

sequence. These nodes are responsible for capturing the behavior of the stock with the layers 

provided: 1, 5, 75. 

 
Figure 10: A node diagram of my final LSTM model 
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2. Model Overlay: This type of image shows how the model’s predictions compare to real-world 

data. After training, I had the model predict all the stock prices after the first 75 days. I then 

overlayed its prediction (orange) over the actual closing stock prices (blue). This is a simple way 

to see how well the model mirrors the data. 

 
Figure 11: A sample of a Model Overlay for META stock – 6/27/24 

3. Future Prediction: This image shows the most recent stock data, followed by the model’s 

prediction for future prices.  

 
Figure 12: A sample of a Future Prediction for META stock – 6/27/24 

While the screenshot above is nearly a flat line, the model’s predictions vary greatly depending on 

the overall context of the stock. The next page shows a screenshot of the web app, and it is an 

understandably bumpy prediction of Amazon’s stock price after its record high. 
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Figure 13: A screenshot of the web app predicting ticker – ‘AMZN,’ 6/27/2024 

 

When I developed the web app, I strayed from the initial design to add graphs to give the user 

additional context. There are two sections of the application – the form and the result. The form has the 

title, ticker, and button, while the result gives a text recommendation, Model Overlay, and Future 

Prediction images. 
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User Guide 

1. Access AIStockHelper via the Web App Link 

2. Input a stock ticker and select ‘Predict.’ 

a. Please note that a time delay of 5 seconds is typical. However, if the chosen ticker has not 

been run since the last close, the time delay increases to 20 seconds while the models are 

retrained. Retraining only happens once per ticker per 24 hours, with the cutoff time at 

market close – 4 pm EST. 

3. The program outputs a Buy/Sell recommendation, an explanation of its recommendation, and a 

newly generated Model Overlay and Model Prediction visualizations. 

http://wesslancaster.com:5000/

